RadioGatún, a belt-and-mill hash function

Guido Bertoni, Joan Daemen, Michaël Peeters* and Gilles Van Assche

STMicroelectronics *De Valck Consultants

Second Cryptographic Hash Workshop
Introduction

• New hash function (family)
• Alternative design
 • Not based on fixed-length comp. function (Damgård-Merkle)
 • Not based on reduction
 ➞ Variable-length input, variable-length output
• Diversity

• Building upon PANAMA
 • Generalizing collision-generating attack [Rijmen et al.]
 • Simplify and strengthen
 • Performance in SW and HW
Alternating-input construction

- **State**
 - Starts from 0
- **Iterate with input blocks**
 - Input mapping
 - State size > input block size (l_i)
- **Do blank iterations**
- **Iterate with output blocks**
 - Output mapping
 - Fixed number for hash function
Belt-and-mill structure

- State = (mill, belt)
- Mill function
 - Non-linear function
 - Diffusion and confusion
- Belt function
 - Linear function
 - Long-term diffusion
- Belt-to-mill + mill-to-belt
 - Bell + milt
 - Linear mappings
RadioGatún

- **Parameter:** word size
 - RadioGatún[32]
 - RadioGatún[64]
Mill Function

Belt Function

Input mapping

Mill

Belt

Milt

Input Block

Mapping

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15

Mill

16 17 18
The mill function contains:
- Bitwise logical operations (XOR, AND, NOT)
- Cyclic shifts
RadioGatún

- The mill function contains:
 - Bitwise logical operations (XOR, AND, NOT)
 - Cyclic shifts
Input Block

| 0 | 1 | 2 |

Input Mapping

Mill Function

Belt Function

Mill

Belt

Input mapping

Belt

Milt

Mill function

Bell

Mill Function

Mill

Belt
Differential trails

- Differential trail
 - State differences + input differences
 - Used to find an **internal collision**
- Weight
 - Negative (binary) logarithm of probability
Trail backtracking

- Propagate difference
 - Through each round
 - Only if right pair
 - $\text{weight} > l_i$: fraction thru
 - $\text{weight} \leq l_i$: pair creation

- Complexity
 - Lonesome round
 - Crowded round
 - **Backtracking cost**
 - Also for algebraic attacks
Analysis

• $\text{RADIOGATÚN}[1, 2, 4, \ldots]$ useful for analysis
 • Explicit search of collisions
 • Differential trails with lowest complexity
 • Trail for $\text{RADIOGATÚN}[1]$ extends to $\text{RADIOGATÚN}[n]$
 • Symmetry destroyed in the mill
 • Specific trails for $\text{RADIOGATÚN}[n]$ may exist with lower cost

• Other aspects
 • Fixed points
 • Algebraic attacks on $\text{RADIOGATÚN}[1, 2, 3, 4, \ldots, 64]$

• Ongoing
 • Prove bounds
Performance

- Extremely fast in hardware
- Fast in software

<table>
<thead>
<tr>
<th></th>
<th>Dell Precision 670 with Intel Xeon 3GHz (in Mbyte/sec)</th>
<th>Windows (32 bits) Visual Studio 2005</th>
<th>Linux (x86_64) GCC 3.3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHA-1</td>
<td>90</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>SHA-256</td>
<td>65</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>PANAMA</td>
<td>480</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>RADIOGATÚN[32]</td>
<td>120</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>RADIOGATÚN[64]</td>
<td>55</td>
<td>270</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- Belt-and-mill structure
 - Simplicity (analysis)
- RADIOGATÚN
 - Performance
 - Existence of toy cipher (analysis)
 - No patent
- Analysis ongoing
- Do not hesitate to attack!
 - See security claims in RADIOGATÚN paper

http://radiogatun.noekeon.org